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ABSTRACT 

Sometimes it is no possible to have a full dense rule base as 
there are gaps in the information. Further, it is often necessary 
to deal with sparse rule base to reduce the size and the 
inference / control time. In such sparse rule bases the classic 
algorithms like the CRI of Zadeh and the Mamdani-method do 
not function for observation hitting into the gaps between 
rules. A linear fuzzy rule interpolation technique (KH- 
interpolation) has been introduced, that is suitable for dealing 
with sparse bases, however, this method often results into 
conclusions which are not directly interpretable. 
In this paper an interpolation technique is proposed that is 
based on the interpolation of the semantic and interrelation of 
rules. This method garantiees the direct interpretability of the 
conclusion. The comparison of two (KH and BK) and the new 
interpolation method will also be discussed. 

1. INTRODUCTION 

Zadeh’s crucial paper, published in 1973 [I]  containing the 
ideas of modeling and controlling very complex (possibly 
nonlinear) systems through linguistically formulated rules, 
introduces a combination of the theory of fuzzy sets proposed 
in 1965 by Zadeh, and of symbolic expert control. The method 
in original form involved very high computational complexity. 
A simplified version was developed and applied soon by 
Mamdani [2] .  Even this simplified approach has exponential 
space and time complexity in the terms of the number of state 
variables. If a fuzzy model contains k variables and maximum 
T linguistic (or other fuzzy) terms in each dimension, the order 

of the number of necessary rules is o ( T k ) .  This expression 
can be decreased by decreasing either T or k or both. The first 
method leads to sparse rule base (where 3i  
U,supp{Ai,j} c Xi and A, is j-th fuzzy set defined on input 
universe X, and i=l..n; n is the number of inputs). In the case 
of such sparse rule bases usually no rule fires in the sense of 
the Mamdani-, Larsen- and Takagi-Sugeno-controllers, etc. 
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as the intersection of the observation A *, and A,, defined on X, 
may be empty set. The use of sparse rule bases allows us 
reducing the number of rules, hence reducing the problem of 
space and the time complexity [5]. Further, sparse rule bases 
can be due to incomplete knowledge or perhaps are due to 
automatic rule tuning [3] and has important role in 
hierarchically structured rule bases [4]. 

KH fuzzy rule interpolation interpolates among the given rules 
to generate a conclusion even in case when A * i  n Ai,, = 0 
[5,6]. KH interpolation can be introduced as an interpolation 
technique for “fuzzy points” and the fuzziness of the 
interpolation is considered at each a! -level, if the semantic of 
fuzzy rules R: I f A i  then Bj is understood as “fuzzy points” of a 
hypothetical mapping. Interpolation is interpretable if the 
existence of full orderings and metrics in each component 
dimension X,. can be assumed, hence the definition of partial 
ordering (PO) among fuzzy sets and the “jiuzzy distance” of 
two comparable sets can be introduced fully in accordance 
with the concept of gradual rules [7]. KH interpolation was 
based on the Fundamental Equation of Rule Interpolation: 
d(A*, AI):  d(A*, A2) = d(B*, B1): d(B*, B2) where 

R,:  IfA, then B,  and R,: IfA, then B, are the selected rules and 
fuzzy sets A ,  and A, are defined on input universe X and B,  and 
B, are defined on output universe Y. A * is the observation, and 
B* is the conclusion searched. d denotes some kind of distance 
or degree of dissimilarity. In the first interpolation algorithms 
this distance was introduced as the set of lower and upper 
a -cut distance [8], describing the relative position of two 
comparable convex and normal (CNF) sets unambiguously. 
Considering the ISH-interpolation at Q = 1 , and suppose that 
the core of the used CNF sets have one element, the classical 
piece wise linear interpolation is obtained fitted to the points 
defined by the core points of the sets. This family of 
interpolation techniques has various advantageous properties, 
however, it is applicable only for CNF-sets, and they often 
result into an abnormal membership function for B* that needs 
further transformation for obtaining a regular fuzzy set. Shi 



and Mizumoto [9], Kawase and Chen [IO], K6czy and Kovks 
of the KH -interpolation is always directly interpretable. The 

application of these conditions however leads to the restriction 
of the shape of the rules and of the observation that might be 
an obstacle of practical applications in some contexts. A 
method has been developed soon that reduces the problem of 
abnormal conclusion [ 121. Further, KH-interpolation does not 
conserve the piece wise linearity of the rules and the 
observation. If e.g. an interpolation method conserves piece 
wise linearity it can then be simplified for widely spread set 
types, namely trapezoidal, triangular and crisp sets, not 
considering all points of the sets, but only their characteristic 
points, resulting in significant computational time reduction. 
An algorithm based on the conservation of relative fuzziness 
has been introduced that always guarantees the direct 
interpretability of the conclusion, however this approach is not 
applicable for certain crisp special cases [13]. A modified 
version has been published [14] (KHG-interpolation) that is 
fully applicable for CNF sets. BK-interpolation [ 15,161, that is 
a general fuzzy rule interpolation method, is applicable even 
for non-convex sets and always results in normal membership 
function, further, it conserves the piece - wise linearity if 
triangular or crisp sets are applied, hence it can significantly be 
simplified for practical application. Its main concept is 
different from the former ones, but it is based on the 
fundamental equation as well. In the BK method first a relation 
R i i is interpolated from R A ~ , B ~  and R A ~ , ~  (the 

interpolation is done by the projected sets A,, A,, B, and B, 
applying a "solid cutting: set interpolation, that results in A' 
and B' , in that way that A' is as close to A* as possible). In the 
second step B* is inferred by the specialized fixed point law 
linear Revision Principle (RP) method based on the similarity 
of A' and A*. BK method does not use directly RA,B,  but it 
functions by the projected sets. 

A ,B 

The method introduced in this paper follows the key idea of 
BK method, but it interpolates the semantic relation SRAL,B* 

and the interrelation IRA*,B* instead of RAi,Bi . Then B* is 

directly inferred by SRA+,B* and IRA+,B+ from A *  
applying new semantic revision RP methods (SRM) that are 
the multi variables extension of the algorithms published by 
Zuliang Shen; Lia Ding and Masao Mukaidono [17]. The 
proposed method always guarantees the direct interpretability 
of the conclusion and conserves the piece - wise linearity if 
triangular sets are applied. The new method functions with 
special CNF (SCNF) sets, which core have one element, as the 
semantic revising Rp method is applicable only for this kind of 
set, that is a widely spread set type in the practical applications. 
BK-interpolation can be simplified for SCNF sets, however it 
does not garantee the SCNF conclusion, hence the simplified 
BK method is not applicable with SCNF sets in hierarchically 
structured fuzzy systems. The new method garantees SCNF 
conclusion. The simplified version of the new method for 
triangular sets will also be discussed. 

[I 13 have determined various conditions when the conclusion 

2. DEFINITIONS 

This section defines the basic concepts utilized in the 
interpolation for later references. 
1) q{A} = inf(support{A}) and s,,{A} = sup(support{A}) 
where A is a t k z y  set. 
2)  cp{A} is the center point of fuzzy set A: 

1 a>O 

where: b = - (1 - sgn(p'l-x'l)) and sgn(a) = 0 a = 0 1 -1 a < O  

1 
2 

4) Let x2 = fT(xl,P1,P2,9m,~1M,C2m,c2M) be that 
function (where x l , ~ 1 , ~ 2 , 9 m , 9 ~ , ~ 2 m , ~ 2 ~  are real 
numbers and Xk, Pk E [ c h ,  c w ]  and c h  I CM where 
k=1,2) which results in x,. Let X'k = X k  - c h  , 
p'k = pk - C h  , and C'k = C/&f - C h .  

1 
+bp'2 - - (1 k b)d2 

2 
1 
2 

~2 = ~ ' 2 + ~ 2 ~  and ~ ' 2  = p ' 2 f ( p ' l - ~ ' 1 )  
-bp'1- -- (1 - b)c'1 

1 a > O  

where b = sgn(p'l-x'l) and sgn(a)= 0 a = 0 
- 1  a < O  

(+) is used for positive and (-) is for negative interrelation. 
5 )  y is the interrelation operator. 

1 
for posit ive interrelation 
for negative interrelation I = {I: 

3. MULTI VARIABLES SEMANTIC REVISING 
METHODS 

In this section a multi variables extension of SRM-VI1 method 
is proposed. In order to infer a conclusion two semantics factor 
have to be considered. Suppose that a rule I fA then B is given 
where A and B are defined on X = [ x , , x ~ ]  and 

Y = [ y m , y M ] ,  respectively. Conclusion B* defined on Y is 
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inferred to observation A * defined on X. The first semantics 
factor is the direction of change [17]. For instance, assuming 
the rule 'if A is small then B is large' and the fact 'A* is very 
small' are given, there can be some different semantics 
viewpoints for deducing B*. The one is by the understanding 
that 'the smaller A is the larger B is'. The other is that 'the 
smaller A is the smaller B is'. The former is called inverse 
inference (-), the latter is called compliance inference (+). The 
second semantics factor is the corresponding relationship 
between A and B. As shown in figure 1 the corresponding part 
for CD in A must be either cd or df in B. For instance, there are 
two points y ,  and y ,  on Y, which can correspond the point x on 
X . We have to decide which one shall be used by the 
semantics of the corresponding relationship. Consequently, 
there are two corresponding relationships (CD + cd, x + y , )  
and (CD+ df, x+y,). The former is called positive 
inference ( '? '? ), and the latter is called negative inference 

('?.l). 

X x Yi Y2 

Figure 1 

Suppose that rule R: if A ,  and .. and A, then B is given, where 
n is the number of inputs and Ai is defined on 4. and B is 
defined on Y. B* is searched to A*p For the interpolation 
technique we slightly modify the SRM-I and I1 methods and 
based on this modification we define an MSRM-I and I1 ( 
multi variables SRM-I and 11), where c ~ { A * ~  }=cp{Ai } and 
support{d *I }=support{Ai }. 

3.1 MSRM-I . 

Characterization of the interrelation 

IR(I)A,.,B = { ( x j , y ) I ~ j  E ~~pp{Aj} ,y  = Z j ( x j )  = 

= f T ( x i ,  CpIAi) > ~PIB},  {Ai}, su {Ai) 9 {B)  9 su { B ) ) )  
(-) is used for negative and (+) is used for positive interrelation 

that is separately defined for each input dimension. f is a 
piece vise linear function, so the interrelation can be defined 
by the characteristic points as: 

(xc,i > ~ c ) ,  (xl,i> Y Z ) ,  (xu, i  > V U )  E I R ( ' ) ~ , B  9 (1) 
where 
xc,i = C P { ~ }  ; YC = d B }  ; X l , j  = 

Yl = Sl{B} 9 Y ,  = s,{B) 

{Ai) ; % j  = %{4} ; 

Characterization of the semantic relation 
Then the semantic relation is defined on [0,1]' (the space of the 
membership degrees of A, and B): 

3.2 MSRM-I1 

Characterization of the semantic relation 

S R ( I 1 ) ~ , . , ~  = {(sj , t ) lsj  = S z ( t )  = t = [O,l]} 

The interrelation is not always piece vise linear, but the same 
characteristic points can be defined as in (1). 

= t  

4. INTERPOLATION OF THE INTER-- AND 
SEMANTIC RELATIONS OF TWO FUZZY RULES 

This section introduces a method to interpolate the inter- and 
semantic relations of rules as: R,: if and .. and A , ,  then B, 
(k=1,2) where fuzzy sets A,,, are defined on input universe 
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Xi = [x,,i, x ~ , i  ] and B, are defined on output universe 

Y = [ y , , y ~ ] .  Two interpolation algorithms, that depend on 

interpolation variables A i ,  Ab E [0,1] , are proposed. They 
result in interpolated I R ~ , B  and S R ~ , B  "between" 

IR A ~ , ~ , B ~  and S R A ~  , B ~  based on MSRM-IdI. 

4.1 Interpolation for MSRM-I. 
IRA. ,Bk and SRA. , B ~  are characterized as described in 

section 3.1. Interpolation is separately done for each input 
universe. 

t , k  r ,k  

4.2 Interpolation for MSRM-I1 

S R ( " ) A ~ , ~ , B ~  is characterized as in section 3.2. 

The interrelation, including SR('I)A~,~ , B ~  , can be defined on 

X x Y x S in a specialized form for the interpolation as: 

%m+Jk = Kxi>Y>a)lP,.&?)= 4 P B k Q  =a,a ES=[OJI) 

dcz da d a  da 
(-.- y>o or -=-=O)} 
4 4  4 4  

Interpolated interrelation 
The interpolated interrelation function is: e,,, = {(xi,Y24lxi = (1-4)%,1 +jliXi& 
y=( l -&)R +Abfi,(Xi,k*J'k,a) E m  m 4 , k , B k )  

~ ( " ) A ~ , B  is the orthogonal projection of points 

IR(II)Ai,s = { ( . q , y ) ~ ( . q , i a )  E"$)Ai.B'a E S  = PJI} i (3) 

equ. (3) is not piece wise linear, but the same characteristic 
points can be defined as in (2). 

5. FUZZY RULE INTERPOLATION 

As mentioned above, applying interpolation PO must be 
defined among rules. In the proposed method PO is defined as 
in the BK-method: F 4 G e rp{F) < rp{G) , where F and G 
are fuzzy sets and r p { A )  is the reference point of fuzzy set A.  
Let us define the distance between two fuzzy sets as a crisp 
distance with the distance of their reference points: 

dC(A1J2) = d(rp{Al),rp{A2}) =Irp{A1J - rpb42H. 
To avoid the problem of abnormal membership function for E* 
no other distance will be calculated, and all points of the 
membership function will be generated by this distance as a 
reference. Let us define the reference point of sets as 
r p { A )  = cp{A) (That is the same as in the BK method). From 
now cp is used in the equations instead of rp. 

Once the "closest" neighbor rules RI and R, of A * are selected, 
as in the former interpolation methods, an interpolated 
semantic relation and interrelation can be generated to infer B* 
to A*. For simplicity let us consider a sparse fuzzy rule base, 
where the selected neighbor rules of the observation A*, are 
RG if A,kand .. and An,k then Bb Let us denote the rules so that 
B1 4 B2 . The main steps of interpolation: 

The main steps of the new method: 
1 )  Selecting the neighbor rules of the observations, that are R I  
and R,. Let us denote the rules so that E1 i B2 . 
2) Generating S R A ~ , ~ , B ~  and I R A ~ , ~ , B ~  (k=1,2). If 

Ai,, 4 Ai,2 then positive or else negative interrelation  IRA^, B is 

used. 
3) Interpolating SR A,. , B  and  IRA^, B . 
In order to define a 1inear.interpolation let 

i= l  
4) Deducing B* 
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It is supposed that the interpolated interrelation and the 
semantic relation can locally be used to infer B* in the 
surroundings of the "position" of A*p In order to apply the 
inference algorithm MSRM-1/11 described in section 3 this 

interrelation must be extended (&Ai,B)  to the size of 

s~pport{A*~) satisfying two extreme cases as if 

contained in and if supp~rt{A*~} = xc,i then &Ai,B 

contains only one point as ( x + ~ ~ , ~ ) .  

s ~ P P o ~ ~ { A  *i)=[xm,i~M,iI, then let Xm,i,, Ym,i,, XM,~ and YMi be 

&d,B = {(Xi>Y)lXi =f(x ' i  ,xc,i,xc,i,xl,i,xyi,~l{A *i),sufA *j}h 

Y = foi', 
d1,i = xc,i - xm,i , d6,i = XM,i - xc,i > d2,i = xc,i - sl{A * i }  7 

d3,i = xC,i -XI,', d4,i = xU,i - xC,i, d5,i = sU{A *i} - x C d  

. Y C ~  Y [ ,  YU 9 a, 4, (x'i , Y' ) E N ~ , B I  

p for positive interrelation 
7 - p for negative interrelation 

I n  n n 
dhi(6),i 

i=l > Y U A  9Yc,YM n n 

Let IRA*',B* e IR,Ai,B, SRA*',B* 
Then the multi variables semantic and interrelation based 
inference can be applied to generate a conclusion. 

S R A ~ , B  

If the observation Vi, A*i is identical with ALt : C ~ { A * ~  } = 

cp{A,,, ), hence Ai = 1 or A i  = 0 then the interpolation 

results in SRA*~,B* and IRA*~ ,B*  that is identical with 

S R A ~ , ~ , B ~  and I R A ~ , ~ , B ~  , thus the resulted B* is equal to 

By Thus the proposed method holds the non-deviation 
property. Consequently, the proposed interpolation technique 
are fitted to the interpolation rules. 
Applying MSRM-I and I1 in one variables case the interpolated 
center point is: 
(cP{A*)> cp{@)) = (CP{Af> CP{% 
(xc =(l-il)cp{4} +%{f?d~Yc = (1-;l)cpf~) +;kp{&d) EmA,B 
Consequently, if SCNF sets are used and the interpolation is 
considered at a = 1 the classical piece wise linear 
interpolation is obtained fitted to the points defined by the core 
points of the sets in fully according with the KH- and BK- 
interpolation. In order to define a non-linear interpolation equ. 
(4) is replaced by a non-linear function. 

6. COMPARISON BETWEEN THE MSRM-I AND I1 
AND THE GENERAL INTERPOLATION METHOD (BK 
INTERPOLATION) 

As mentioned above the key idea of the BK method can be 
separated into two steps. In the firs step a rule R' is 
interpolated, then in the second step a conclusion is generated 
based on the similarity of R' and the observations using an RP 
method. In the publications a solid cutting set interpolation 
algorithm and a specialized fixed point law has been proposed 
for these two steps to be applicable for arbitrary shaped fuzzy 
sets. If we use SCNF sets the solid cutting algorithm can be 
simplified in two ways applying the classical linear 
interpolation function that is for given points x, and x2, 
depending on variables h=[0,1] as 

. .  
x2 = f'(Xl,X2,A) = (1 - A)Xl + ax2 : 

Ai = fi11(A1, A2, A) that is based on the interpolation of the 
fuzziness of each a-cut of the given sets. Let the interpolated 
set 

sl{Aia} = fi(slIAla},S~{A2a},a) 1 

%{Aial = fi(suIA1a},s, b42a1,A) 
where A, is the a-cut of fuzzy set A. 

If in the second step of the BK method the MSRM-I is applied 
andf, is used for set interpolation then the MSRM-I based 
interpolation proposed in this paper is obtained. If MSRM-I1 
and fll are applied then MSRM-I1 based interpolation is 
obtained. It can be said consequently, that the MSRM-I 
interpolation considers the membership values of the 
corresponding elements and the MSRM-I1 interpolation 
considers the fuzziness of each a-cut of the given sets in fully 
accordance with main concept of the semantic revision RP 
methods, and the interpolation can be separately done at each 
a-level like the KH method. The proposed MSRM-1/11 based 
interpolations conserve the piece-wise linearity for triangular 
sets, further, if triangular Sets are used then the MSRM-I and I1 
based interpolation and the BK with solid cutting and fixed 
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point law RP method result in the same solution. The MSRM-I 
and I1 interpolations can be applied only for SCNF sets, 
however, they have an important advantageous, namely, they 
always result in SCNF set unlike the BK method with solid 
cutting and fixed point law RP method, that might result in a 
non-convex set. It has important role in hierarchically 
structured systems if simple SCNF sets are used. 

The comparison of the KH and the BK method using triangular 
sets has been published in [18]. The comparison of the KH and 
proposed methods with triangular sets is the same as [18], 
because in this case the general method and the SRM-I and I1 
based algorithms are identical as mentioned above. 

7. CONCLUSION 

In this paper two fuzzy rule base interpolation techniques are 
proposed that are based on the MSRM RP methods. These new 
techniques are theoretically different from the BK method, 
however the new methods are special cases of the BK method 
using proper solid cutting techniques and RP method as 
defined in this paper. This implies that the new methods 
maintain the important advantageous of the general method, 
namely, they conserve the piece wise linearity if triangular sets 
are applied and always result in a directly interpretable 
conclusion unlike the KH algorithm. The new methods are 
simpler than the BK method as they are applicable only for 
SCNF sets, however, they result always in SCNF sets, that is 
important in hierarchically structured systems. 
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